ROC CARBON COMPANY

Customer Driven, Service Focused, Purpose Led.

FOR OVER 65 YEARS,

ROC Carbon has provided high quality products and responsive service to help meet our customer's needs.

Recently, we have initiated a program that expands our long history of offering urgent next day delivery of custom parts, to all orders. This initiative required many changes in all departments as well as a new, live order tracking system.

As our industry changes, ROC is working toward leveraging web based tools to better serve our customers. We redesigned our website, added web blogs, and a new chat service to make communication with prospects and customers more flexible and engaging. I encourage you to experience these new services. Also, with artificial intelligence gaining momentum, ROC is beginning to study how this tool can be used to serve customers faster and provide better solutions.

These changes are allowing ROC to improve upon the core elements that we have always provided: responsive service, custom parts, and technical assistance.

Cinto Mon

PRESIDENT, CEO

ROC CARBON COMPANY

ROC Carbon Company manufactures a wide variety of seals, rings, bearings, and other high-precision wear parts for compressors, steam turbines, centrifugal pumps, and industrial fans and blowers. We supply parts to original equipment manufacturers, repair shops, end users, petrochemical plants, refineries, power plants and many other industries.

We manufacture parts from a wide range of high-performance materials including:

- Graphite
- Carbon/graphite of various grades, including
- metal-impregnated and resinimpregnated carbon (page 8)
- PTFE materials, virgin or filled (page 10 and 11)
- PEEK materials, virgin or filled (page 10)
- Metals, both common and exotic (*Inconel, Monel, titanium, etc.*)

FAST TURNAROUND

Since our beginning, ROC Carbon's success has been built on fast delivery of critical parts. ROC has a 98 percent on-time delivery record since 1990, including emergency shipments. We respond quickly without sacrificing competitive pricing or the highest level of quality, and we provide onesource accountability to our customers.

RAW MATERIALS INVENTORY

We stock a range of raw materials for customers who wish to machine their own replacement parts. Our raw material inventory includes:

- Graphite: rectangular shapes (up to 12" x 24" x 39"), as well as cylindrical rod shapes from 0.25-in. to 24-in. diameter. Other sizes available on special request.
- Carbon/graphite (including resin-impregnated seal grades): cylindrical rods up to 14 in. OD (various inside diameters) in lengths up to 23 in. (not all outside diameters).
- PTFE: cylinders up to 20-in. diameter; plate up to 48 in. x 48 in. x 2 in. Larger sizes are available on request.
- PEEK: cylinders up to 20-in. diameter

ENGINEERING & TECHNICAL SERVICES

Our engineering support group designs or modifies seals and other parts to meet individual requirements and provides field consultation, installation assistance, and follow-up to assure proper performance. Our recommended solutions are based on years of experience with virtually all makes and types of equipment.

SPECIAL SERVICES

In addition to parts manufacturing, we offer the following stand-alone services:

- Contract machining and waterjet cutting (page 7)
- Press-fit and shrink-fit (calculations & installation)
- Lapping

FACILITIES

Our 30,000-sq ft manufacturing plant in west Houston accommodates both smallquantity, quick-turnaround orders and longer-lead-time, mediumvolume production runs. The success of ROC Carbon's Quality Program is reflected in our ISO 9001 certification since 1999.

OEM REPLACEMENT PARTS

We manufacture replacement carbon/graphite, PTFE, and metal parts for the following rotating and reciprocating equipment:

STEAM TURBINES

- Coppus
- Dean Hill
- Delaval
- Elliott
- General Electric
- Murray
- Skinner
- Terry
- Westinghouse
- Worthington

- RECIPROCATING COMPRESSORS
- Gardner-Denver
- Sullair
- Westinghouse

CENTRIFUGAL & AXIAL COMPRESSORS

- Allis-Chalmers
- Atlas Copco
- Carling
- Carrier
- Chicago Pneumatic
- Clark (Dresser, Inc.)
- Delaval

- ROTARY STEAM JOINTS
- Maier Gmbh
- Johnson
- Elliott
- Ingersoll-Rand
- Joy
- Siemens Company
- Sulzer
- Westinghouse
- York

ROC CARBON OFFERS

Short Lead Times with up to Same Day Deliveries

Responsive Technical Consultation

Reliable On-Time Delivery

24/7 Ordering and Sales Assistance

PREMIER PRODUCT MANUFACTURING & CRAFTSMANSHIP

ROC CARBON'S PRODUCT OFFERINGS

SEGMENTED SEAL RINGS

Graphite is an ideal material for steam turbine packing rings, secondary containment seals, and blower rings. Our rings feature precision manufacturing and special material grades for optimum sealing performance and long service life.

MATERIALS

Graphite grades used are from our Group C graphite, Group B and Group A materials (see page 8). These grades have a fine-grain structure with excellent mechanical properties. Retaining (or "garter") springs are made from lnconel (for temperatures above 700° F) or stainless steel. Stops are made from stainless steel, cadmium-plated steel, or bronze.

PRECISION MANUFACTURING

Sealing effectiveness of ROC Carbon turbine rings is achieved by a combination of careful design and painstaking craftsmanship in manufacturing. Shaft clearance calculations take into account the coefficient of thermal expansion of both the shaft material and the selected carbon/graphite grade as well as the exact operating temperature. Typical segment ends are either overlap or light-tight butt joints, and each joint is matched and marked. Ring faces are given a commercial lap finish.

AVAILABILITY

Over the past 40 years, we have compiled a comprehensive database of 20,000 cross reference part numbers. If you can supply model number or OEM part number, we can quickly determine the correct ROC part number and provide a quote or ship the part immediately if stock is available.

TECHNICAL SERVICES

ROC Carbon's engineering staff is available to help you evaluate seal problems and to recommend solutions involving seal geometry and material. For nonstandard parts on modified machines, we will recommend the proper turbine ring ID if you furnish steam conditions and shaft size.

FOR ORIGINAL EQUIPMENT REPLACEMENT PARTS, PLEASE FURNISH.

The OEM part number or the specifications of the machine.

For custom-designed parts, furnished engineered. Drawings can be made available

If you wish, we will design a seal for you.

MECHANICAL SEAL FACES

ROC Carbon manufactures carbon/graphite seal faces to OEM specifications, working from your drawings or samples and using the same high-guality materials and tolerances that original equipment manufacturers use. ROC is experienced in machining intricate details, such as flow channels and ports. Our lapping capabilities encompass both carbon and hard faces up to 17 inches in diameter and flatness as tight as 2 helium light bands. We can insert the carbon seals in metal housings (machined by us or furnished by you) by heat shrink fitting or by using specialty adhesives.

ROC Carbon's engineering staff is available to help you evaluate seal problems and to recommend solutions involving seal geometry and material.

PISTON RINGS

Piston rings are used in reciprocating compressors, control valves, poppet valves, and other similar applications. The primary sealing surface is the contact between the OD of the seal and the cylinder wall. For some designs, a separate spring expander is required on the ID of ring to energize (push) the segments to the cylinder wall. The secondary sealing surface is the contact of the face of the ring and the face of the piston ring groove. Multiple rings are usually needed to seal the high pressure in the cylinder.

CARBON/GRAPHITE BUSHINGS & BEARINGS

ROC Carbon self-lubricating bearings and bushings are available as standard. replacement styles or custom-designed parts for specific operating problems. Parts range from simple sleeve bushings to complex styles incorporating notches, grooves or metal reinforcing sleeves.

HIGH-PERFORMANCE MATERIALS

Carbon/graphite grades selected should be compatible both with the fluids being handled and the operating parameters. The typical grades used are as follows:

- Material Group A is resin-impregnated for abrasive & food applications
- Material Group B with anti-oxidant impregnation is used for higher operating temperatures
- Both Material Group C and Material Group F are used in general purpose applications
- Material Group E is metal-impregnated for improved heat dissipation, wear, and strength characteristics.
 Depending on the application, various types of metal-impregnation can be used.

PRESS FITTING & SHRINK FITTING

For metal-reinforced styles, the method used to assemble the carbon into the metal housing depends on the carbon grade used, the metal selected, and the operating temperature.

Cold Press fitting is generally used for lowtemperature applications, where relatively low interference is needed to keep the carbon from rotating independently. Heat shrink fits are used for high temperature applications requiring greater interference to prevent carbon rotation.

ROC Carbon's engineering staff can help you evaluate bearing and bushing problems and recommend solutions involving seal geometry and material. For nonstandard parts used for modified machines, we can recommend the proper bore sizes and materials for optimum performance.

METAL-BACKED SEAL RINGS

ROC Carbon Type MB carbon/graphite compressor seal rings are typically double-face seals that provide a critical seal to prevent fugitive emissions. The seals are installed over the shaft, sandwiched between the rotating seal face and stationary face. Carbon's hardness and graphite's lubricating properties combine to deliver long service. Type MB compressor seal rings have an outer metal ring to reinforce the carbon/graphite and preserve seal geometry at high speeds, while maintaining a constant gap between the shaft and the ID of the seal.

ROC metal-backed seals are available in both standard replacement styles and in custom configurations to solve specific operating problems.

PRECISION MANUFACTURING

Seal geometry is extremely important to service life. The two seal faces must be identical so that the seal rotates at one-half speed relative to the rotating seal ring, subjecting both seal faces to the same wear rate. If not identical, one seal face will wear excessively, shortening seal life. ROC seal surfaces are lapped and polished to within 1 helium light band (less than 12 millionths of an inch) for optimum sealing performance. Precise machining also produces perfectly round seals, preventing vibration that causes premature seal failure.

SHRINK-FITTING AND STRESS RELIEVING

To prevent stress buildup that can shorten seal life, ROC Carbon follows a proprietary procedure that shrink-fits the metal ring over the carbon/graphite followed by re-stabilizing the seal before final machining. To further assure optimum geometry, larger ROC Carbon Type MB seal rings are shipped with a carbon/graphite plug that helps prevent seal damage during storage and handling. The plug is removed prior to seal installation.

MATERIALS

Carbon/graphite grades are chosen to be compatible with the fluids being handled and with the mating seal surfaces. Typical carbon grades used are in our Materials Group A, with Shore Scleroscope hardnesses ranging from 77 to 95 (see page 8). For operating temperatures above 500° F, metalimpregnated carbon/graphite is used. The metal also has the appropriate corrosion resistance for the intended service.

BRONZE BUSHINGS WITH GRAPHITE PLUGS

ROC Carbon offers bronze bushings with graphite plugs, ideal for applications requiring self-lubrication and wear resistance. The bronze provides strength, and embedded graphite acts as a solid lubricant. These bushings excel in high-load, low-speed scenarios where traditional lubrication methods are impractical. They demand minimal maintenance, offer some corrosion resistance, and function in wet and dry conditions and across a broad temperature range.

LABYRINTH SEALS

ROC manufactures labyrinth seals up to 12 inches OD for all makes and models of turbines. Our CNC machining capabilites include the full range of tooth configurations: straight, stepped, angled, staggered, and more. We work from your drawings or samples. Custom sizes and fast delivery are our specialty.

These seals (typically two-piece) are precisionmachined at our Houston facility. To match virtually any application, we offer the following materials:

- bronze
- aluminum
- nickel-silver alloy

Typical labryinth seal cross-sections

AXIAL FLOW COMPRESSOR BUSHINGS

ROC Carbon can help you with your stator bushing repair jobs. We offer 2 types of services for these types of parts.

One option is to have us install new carbon bushings in to the original housings. We will remove the old worn bushings, inspect for damage, and then clean/ sand blast the metal housings and install new bushings.

A second option is to have us supply complete new parts (metal housing with carbon bushings). We can reverse engineer the parts from a sample, or work directly from your drawing.

BRONZE BUSHINGS

ROC Carbon offers custom-machined bronze bushings and bearings for applications where bronze alloys are more suitable than carbon-graphite for impact strength, resistance to corrosion, and durability against abrasives. Numerous bronze alloys are available. We machine bushings for pumps, sumps, turbines and other equipment. Our CNC manufacturing center can machine straight or spiral ID grooves, and we also offer two-piece bushings with milled split lines.

To get started, supply your drawing and specifications or send samples so that we can reverse engineer replacement parts.

WATERJET CUTTING SERVICE

Waterjet cutting is a versatile, high-precision coldcutting process that uses a high-velocity (Mach 2 to Mach 3) stream of water to efficiently cut a wide range of materials, producing parts in a wide range of sizes, down to tiny pieces.

The waterjet with entrained garnet abrasive cuts stone, concrete, glass and metals, including titanium, stainless steel, Inconel, and ceramics including alumina.

Waterjet cutting is ideal for short-run part production, just-in-time manufacturing, tooling, and prototype part development.

ADVANTAGES OF WATERJET CUTTING

- Materials can be conserved by nesting parts on the cutting layout
- Little material loss from cutting
- No heat-affected zones or mechanical stresses on cut objects
- Cuts extremely fine details
- Little or no burr
- Efficiently cuts extremely hard materials

One of ROC's waterjet cutting machines is an OMAX Model 5555, which has a 55 in. x 55 in. work envelope.

BALL VALVE SEATS

Ball valve seats are the primary seal in a ball valve. Typically the seats are made from PTFE for lower temperatures, carbon for higher temperatures, and metal for the highest temperatures. The valve seats support the ball during the open/partially open position. When the valve is closed, fluid pressure in the pipe pushes the ball toward one of the seats. This action creates a seal since the seat has been lapped to the ball during the manufacturing process.

MANUFACTURING

With PTFE, the seat is machined as a single component. Because PTFE conforms to the ball surface, lapping the seat and ball is not necessary.

BLOWER SEALS

Blower systems typically employ various types of seals to ensure effective operation. These include labyrinth seals, which use intricate channels to obstruct the passage of air or gases. Segmented carbon seals utilize segments of carbon material to create a tight barrier. Mechanical face seals rely on two precisely engineered faces to prevent the escape of fluids or gases. Each type serves a specific purpose in maintaining the integrity and efficiency of blower systems.

Segmented blower seal

CARBON GRAPHITE GRADE SELECTION GUIDE

REPRESENTATIVE SAMPLING

CARBON GRAPHITE GRADE SELECTION GUIDE

ROC Carbon carbon/graphite materials combine the superior strength, hardness, and wear resistance of carbon with the natural lubricity of graphite. These chemically bonded carbon materials are strong and thermally stable and are inert in most chemical and corrosive applications. When even higher mechanical properties or impervious materials are required, material performance properties can be enhanced by special impregnation with resins or metals. These impregnated carbon grades offer maximum resistance to corrosion, wear, and oxidation.

The grades presented in the guide are only a representative sampling of our many grades. Please call for information on other grades.

In general, ROC Carbon carbon/graphite seals and beaings are used where extreme operating temperatures and/or corrosive fluids would cause conventional lubricants to decompose, where lubricants would contaminate process fluids, and where equipment design make conventional lubricating systems too expensive to install and maintain. Other applications for which ROC Carbon supplies carbon/ graphite materials include electrodes and brazing boats, jigs, and fixtures.

USING THIS GUIDE

- 1. Look up the chemical/environment for your application in Table 2 and determine the CR (Corrosion Resistance) Group.
- 2. Using Table 1, find the materials(s) that match the CR Group found in step 1.
- 3. Verify the operation temperature does not exceed temperature limit of the material. Remember to consider heat generation in the bearing or seal can cause higher temperatures in the materials.
- 4. Our Technical Support Group would be happy to assist you in:
 - Material selection
 - Bearing loads
 - Press fits and recommended clearances

GRADES
SELECTED
TIES OF
- PROPER
PHYSICAL
TABLE 1 -

	0		0	0	0	0													
	osphere	ů	2,76	2,76	2,76	2,76	682	260	260	196	246	260	871	500	927	927	538	204	927
ure Limit	Inert Atm	Ц °	5,000	5,000	5,000	5,000	1,800	500	500	390	480	500	1,600	932	1,700	1,700	1,000	400	1,700
Temperatu	mosphere	°	399	454	427	427	343	260	260	199	249	260	649	400	371	371	349	204	371
	Oxidizing At	Å	750	850	800	800	650	500	500	390	480	500	1,200	752	700	700	660	400	700
Coefficient of Thermal Expansion	() 10-6 in (in /°E)		1.5	3.1	2.7	2.6	3.2	2.9	2.8	2.2	3.1	2.6	2.1	2.8	2.0	1.4	2.2	1.9	2.1
Modulus of Elasticity				1.7	1.5	1.2	1.5	3.3	3.2	3.4	3.2	2.3	1.2	3.9	2.8	2.8	4.4	2.9	3.1
/e Strength		IVILa	66	135	102	83	165	207	221	200	245	172	97	300	110	159	259	162	172
Compressiv		0	9,600	19,575	14,800	12,100	24,000	30,000	32,000	29,000	35,500	25,000	14,000	43,500	16,000	23,000	37,500	23,500	25,000
trength		INIL	29	65	54	41	58	64	76	76	78	69	38	06	52	52	86	33	59
Flexural S			4,200	9,425	7,850	6,000	8,400	9,300	11,000	11,000	11,300	10,000	5,500	13,050	7,500	7,500	12,500	4,800	8,500
Hardness	(Shore	Scleroscope)	45	76	60	55	72	84	06	101	87	85	55	88	40	55	120 (2)	55	55
Apparent Density	(00)0)	(2016)	1.72	1.78	1.80	1.78	1.72	1.82	1.86	1.82	1.87	1.85	1.85	2.30	2.85	2.40	2.30	2.45	2.55
Composition Code¹			Ċ	IJ	Ċ	IJ	CG	CGI	CGI	CGI	CGI	CGI	GX	CG(SB)	CG(CU)	CG(NICR)	CG(SB)	CG(B)	CG(BR)
Grade			R-103	R-115	R-138	R-383	R-433	R-122	R-143	R-208	R-211	R-307	R-422	R-116	R-190	R-191	R-203	R-204	R-391
CR Group			1	-	-	-	1	2	2	2	2	2	4	5	5	5	5	5	5

¹COMPOSITION CODES

I - Impregnation	NICR - Nickel chrome	X - Oxidation Impregnation	SB - Antimony
B - Babbitt	BR - Bronze	C - Carbon	CU - Copper

²HRB

G - Graphite

Note: The physical properties of ROC Carbon grades may vary in relation to the molded part size and configuration; the above values are typical and should be considered only as a guide or reference.

CHEMICAL COMPATIBILITY

The tables on this page present general grade recommendations for chemical service. However, a particular grade's resistance to chemical attack can vary substantially according to temperature, concentration, and exposure time. Please consult with ROC Carbon's applications engineering staff to determine the appropriate grade for your specific application.

TABLE 2 - CORROSION RESISTANCE BY SPECIFIC CHEMICAL

 $\checkmark \ \ \mathsf{Compatible} \qquad \bigcirc \ \mathsf{Questionable} \qquad \times \ \mathsf{Not} \ \mathsf{Recommended}$

CR GROUPS	1	2	3	4	5	CR GROUPS	1	2	3	4	5
Abietic Acid	\checkmark	\checkmark	\checkmark	0	\checkmark	Baking Soda	\checkmark	\checkmark	\checkmark	×	~
Acetaldehyde	\checkmark	\checkmark	\checkmark	0	~	Barium Hydroxide	\checkmark	\checkmark	\checkmark	×	0
Acetanilide	\checkmark	\checkmark	\checkmark	×	~	Barium Sulfide	\checkmark	\checkmark	\checkmark	×	~
Acetic Acid to 350° F	\checkmark	\checkmark	\checkmark	×	0	Battery Acid (90% H2S04)	\checkmark	0	\checkmark	×	0
Acetic Anhydride to 350° F	\checkmark	\checkmark	\checkmark	×	0	Beer	\checkmark	\checkmark	\checkmark	×	\checkmark
Acetone	\checkmark	\checkmark	\checkmark	0	\checkmark	Benzaldehyde	\checkmark	\checkmark	\checkmark	Ο	~
Acetophenone	\checkmark	\checkmark	~	0	\checkmark	Benzene (benzol)	\checkmark	\checkmark	\checkmark	\checkmark	~
Acetylene	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	Benzene Sulfonic Acid	\checkmark	\checkmark	\checkmark	\bigcirc	~
Acetylsalicylic Acid (Aspirin)	\checkmark	\checkmark	\checkmark	0	\checkmark	Benzoic Acid	\checkmark	\checkmark	\checkmark	0	\checkmark
Acrolein	\checkmark	\checkmark	\checkmark	0	\checkmark	Beta-Naphthol	\checkmark	\checkmark	\checkmark	0	~
Acrylonitrile	\times	0	\checkmark	\checkmark	0	Bismuth (Molten)	\checkmark	\checkmark	\checkmark	×	\checkmark
Adipic Acid	\checkmark	\checkmark	\checkmark	0	\checkmark	Black Ash	\checkmark	\checkmark	\checkmark	×	\checkmark
Air to 600° F	\checkmark	0	\checkmark	\checkmark	0	Black Sulfate Liquor	\checkmark	\checkmark	\checkmark	×	\checkmark
Air above 600° F	0	×	0	\checkmark	×	Bleaching Powder	\checkmark	0	\checkmark	0	×
Alkyl Aryl Sulfonate	\checkmark	\checkmark	\checkmark	0	\checkmark	Borax	\checkmark	\checkmark	\checkmark	×	~
Allyl Chloride	\checkmark	\checkmark	\checkmark	×	\checkmark	Boric Acid	\checkmark	\checkmark	\checkmark	×	~
Alum (ammonia)	\checkmark	\checkmark	\checkmark	×	\checkmark	Boron Triflouride	\checkmark	\checkmark	\checkmark	×	~
Alum (chrome)	\checkmark	\checkmark	\checkmark	×	\checkmark	Brass (Molten)	\checkmark	0	\checkmark	0	×
Alum (potash)	\checkmark	\checkmark	\checkmark	×	\checkmark	Bromine	\checkmark	0	\checkmark	0	0
Aluminum (molten)	\checkmark	0	\checkmark	0	×	Bronze (Molten)	\checkmark	0	\checkmark	0	×
Aluminum Chloride	\checkmark	\checkmark	\checkmark	×	0	Butadiene	\checkmark	\checkmark	\checkmark	\checkmark	~
Aluminum Sulfate	\checkmark	\checkmark	\checkmark	×	\checkmark	Butane	\checkmark	\checkmark	\checkmark	\checkmark	~
Ammonia (wet) to 300° F	\checkmark	\checkmark	\checkmark	×	\checkmark	Butter, Buttermilk	\checkmark	\checkmark	\checkmark	0	~
Ammonia (anhydrous)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	Butyl Acetate	\checkmark	\checkmark	\checkmark	0	~
Ammonium Chloride	\checkmark	\checkmark	\checkmark	×	0	Butyl Alcohol	\checkmark	\checkmark	\checkmark	0	~
Ammonium Hydroxide	\checkmark	\checkmark	\checkmark	×	\checkmark	Butyl Amines	\checkmark	\checkmark	\checkmark	×	~
Ammonium Nitrate	\checkmark	\checkmark	\checkmark	×	\checkmark	Butylene	\checkmark	\checkmark	\checkmark	\checkmark	~
Ammonium Phosphate	\checkmark	\checkmark	\checkmark	×	\checkmark	Cadmium (Molten)	\checkmark	0	\checkmark	0	×
Amyl Acetate	\checkmark	\checkmark	\checkmark	0	\checkmark	Calcium Bisulfite	\checkmark	\checkmark	\checkmark	×	~
Amyl Alcohol	\checkmark	~	\checkmark	0	~	Calcium Chloride	\checkmark	\checkmark	\checkmark	×	~
Amyl Amines	\checkmark	\checkmark	\checkmark	×	\checkmark	Calcium Hydroxide	\checkmark	\checkmark	\checkmark	×	0
Amyl Chloride	\checkmark	\checkmark	\checkmark	Х	\checkmark	Calcium Hypochlorite	0	0	\checkmark	×	×
Aniline	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	Carbolic Acid (Phenol)	\checkmark	\checkmark	\checkmark	×	~
Anthracene	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	Carbon Dioxide to 600° F	\checkmark	\checkmark	\checkmark	\checkmark	0
Antimony	\checkmark	0	\checkmark	0	×	Carbon Dioxide aboce 600° F	0	0	0	\checkmark	0
Argon	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	Carbon Disfulfide	\checkmark	\checkmark	\checkmark	0	\checkmark
Arsenic (Molten)	\checkmark	0	\checkmark	0	×	Carbon Monoxide	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Asphalt	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	Carbon Tetrachloride	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Aromatic Fuels	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	Castor Oil	\checkmark	\checkmark	\checkmark	\bigcirc	\checkmark
Babbitt Metal (molten)	\checkmark	0	\checkmark	0	×	Caustic Soda	~	\checkmark	\checkmark	Х	0

CR GROUPS	1	2	3	4	5	CR GROUPS	1	2	3	4	5
"Cellosolves"	\checkmark	\checkmark	\checkmark	0	\checkmark	Fuel Oil	\checkmark	\checkmark	\checkmark	\checkmark	~
Cellulose Acetate (rayon)	~	\checkmark	\checkmark	0	\checkmark	Furfural	\checkmark	\checkmark	\checkmark	0	~
Chloracetic Acid	\checkmark	\checkmark	\checkmark	0	\checkmark	Gallium	\checkmark	0	\checkmark	0	0
Chloral	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	Gasoline	\checkmark	\checkmark	\checkmark	\checkmark	~
"Chlorethene"	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	Glutamic Acid	\checkmark	\checkmark	\checkmark	0	\checkmark
Chlorine	~	\checkmark	\checkmark	0	\checkmark	Glycerine	\checkmark	\checkmark	\checkmark	0	~
Chlorobenzene	~	\checkmark	\checkmark	\checkmark	\checkmark	Gold (Molten)	\checkmark	\checkmark	\checkmark	×	~
Chloroform	~	\checkmark	\checkmark	\checkmark	\checkmark	Green Sulfate Liquor	\checkmark	\checkmark	\checkmark	×	~
Chlorosulfonic Acid	~	\checkmark	\checkmark	×	\checkmark	Helium	\checkmark	\checkmark	\checkmark	\checkmark	~
Chromic Acid to 300° F	0	0	\checkmark	×	\checkmark	Hexane	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Chromium Potassium Sulfate	\checkmark	\checkmark	\checkmark	×	~	Hydrazine	\checkmark	\checkmark	\checkmark	×	~
Citric Acid (citrus juices)	~	\checkmark	\checkmark	×	\checkmark	Hydrobromic Acid	\checkmark	\checkmark	\checkmark	×	0
Coal Tar	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	Hydrochloric (muriatic) Acid	\checkmark	\checkmark	\checkmark	×	0
Copper	~	0	\checkmark	0	×	Hyrdocyanic (Prussic) Acid	\checkmark	\checkmark	\checkmark	×	0
Copper Sulfate	\checkmark	\checkmark	\checkmark	×	\checkmark	Hydroflouric Acid to 48%	\checkmark	\checkmark	\checkmark	×	0
Cottonseed Oil	\checkmark	\checkmark	\checkmark	0	\checkmark	Hydrogen	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Creosote	\checkmark	\checkmark	\checkmark	0	~	Hydrogen Chloride	\checkmark	\checkmark	\checkmark	0	~
Cresols, Cresylic Acid	\checkmark	\checkmark	\checkmark	0	~	Hydrogen Flouride	\checkmark	\checkmark	\checkmark	0	~
Crotonaldehvde	\checkmark	\checkmark	\checkmark	0	\checkmark	Hydrogen Sulfide	\checkmark	\checkmark	\checkmark	0	~
Cumene	\checkmark	\checkmark	\checkmark	~	\checkmark	Hvdrogen Peroxide	0	0	\checkmark	×	0
Cupric Chloride	\checkmark	\checkmark	\checkmark	×	~	Hvdroxlamine	\checkmark	\checkmark	\checkmark	×	\checkmark
Cuprous Ammonium Acetate-Viscose	\checkmark	\checkmark	\checkmark	×	~	Y Hypochlorous Acid	0	0	\checkmark	0	×
Cvanic Acid	\checkmark	\checkmark	\checkmark	0	0	Isobutvl/Isopropyl Alcohols	~	~	\checkmark	0	~
Cvanide Plating Solutions	\checkmark	\checkmark	~	×	0	Isophthalic Acid	\checkmark	\checkmark	~	×	~
Cvclohexane	\checkmark	\checkmark	\checkmark	\checkmark	~	Kerosene	\checkmark	\checkmark	\checkmark	~	~
Detergents	\checkmark	\checkmark	\checkmark	×	~	Lactic/Lauric Acids	\checkmark	\checkmark	\checkmark	0	~
Dibutvl Phosphate	\checkmark	\checkmark	\checkmark	0	~	Lead (Molten)	\checkmark	0	\checkmark	0	×
Diethanol Amine	\checkmark	\checkmark	\checkmark	×	~	Lithium Carbonate	\checkmark	\checkmark	\checkmark	×	~
Diethyl Sulfate (Ethyl Sulfate)	\checkmark	\checkmark	\checkmark	×	~	Lithium Hydroxide	\checkmark	\checkmark	\checkmark	×	0
Disodium Phosphate	\checkmark	\checkmark	\checkmark	×	~	Lubricating Oil	\checkmark	\checkmark	\checkmark	~	~
"Dowtherm"	~	\checkmark	\checkmark	×	~	Lye	~	\checkmark	\checkmark	×	0
Epichlorohydrin	~	\checkmark	\checkmark	×	\checkmark	Magnesium (Molten)	\checkmark	0	\checkmark	×	×
Ethane	\checkmark	\checkmark	\checkmark	×	~	Magnesium Bisulfite	\checkmark	\checkmark	\checkmark	×	0
Ether (Ethyl Ether)	\checkmark	\checkmark	\checkmark	0	\checkmark	Magnesium Sulfate	\checkmark	\checkmark	\checkmark	×	0
Ethyl Acetate	\checkmark	\checkmark	\checkmark	0	\checkmark	Maleic Aid	\checkmark	\checkmark	\checkmark	×	0
Ethyl Alcohol	\checkmark	\checkmark	\checkmark	0	~	Maleic Anhydride	\checkmark	\checkmark	\checkmark	×	0
Ethyl Benzene	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	Mercuric Chloride	\checkmark	\checkmark	\checkmark	×	×
Ethyl Chloride and Dichloride	\checkmark	\checkmark	\checkmark	×	\checkmark	Mercury	\checkmark	\checkmark	\checkmark	×	×
Ethylene	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	Methane	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Ethylene Glycol	\checkmark	\checkmark	\checkmark	0	~	Methyl Alcohol (Methanol)	\checkmark	\checkmark	\checkmark	0	\checkmark
Ethylene Oxide	\checkmark	\checkmark	\checkmark	0	\checkmark	Methyl Chloride	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Fatty Acids	\checkmark	\checkmark	\checkmark	0	0	Methylene Dichloride	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Ferric Chloride	\checkmark	\checkmark	\checkmark	×	0	Methyl Ethyl Ether	\checkmark	\checkmark	\checkmark	0	\checkmark
Ferric Sulfate	\checkmark	\checkmark	\checkmark	×	\checkmark	Methyl Ethyl Ketone	\checkmark	\checkmark	\checkmark	0	\checkmark
Fluorine gas	\bigcirc	0	Ο	\checkmark	0	Methyl Isobutyl Ketone	\checkmark	\checkmark	\checkmark	0	\checkmark
Flourosilicic Acid	\checkmark	0	\checkmark	×	0	Methyl Salicylate	\checkmark	\checkmark	\checkmark	0	\checkmark
Formaldehyde	\checkmark	\checkmark	\checkmark	0	~	Milk	\checkmark	\checkmark	\checkmark	×	\checkmark
Formamide	\checkmark	\checkmark	\checkmark	×	\checkmark	Mineral Oil	~	\checkmark	\checkmark	\checkmark	\checkmark
Formic Acid	\checkmark	\checkmark	\checkmark	×	0	Molasses	~	\checkmark	\checkmark	×	\checkmark
Freons	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	Monoethanol Amine	~	\checkmark	\checkmark	×	\checkmark
Fruit juices	\checkmark	~	~	×	\checkmark	Muriatic Acid	\checkmark	~	\checkmark	×	0

CR GROUPS	1	2	3	4	5	CR GROUPS	1	2	3	4	5
Naphtha	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	Salicylic Acid	\checkmark	\checkmark	\checkmark	×	\checkmark
Naphthalene	~	\checkmark	~	\checkmark	~	Sea Water	\checkmark	\checkmark	\checkmark	×	\checkmark
Nickel Chloride	\checkmark	\checkmark	\checkmark	×	0	Sewage	\checkmark	\checkmark	\checkmark	×	\checkmark
Nickel Sulfate	\checkmark	\checkmark	~	×	\checkmark	Silver	\checkmark	0	\checkmark	0	×
Nitrating Acid to 75% total acid	0	0	~	×	0	Soap and Soap Liquors	\checkmark	\checkmark	\checkmark	×	\checkmark
Nitric Acid to 15%	\checkmark	\checkmark	~	×	0	Soda Ash	\checkmark	\checkmark	\checkmark	×	×
Nitric Acid 15 to 100%	\checkmark	0	\checkmark	×	×	Sodium Salts-see Potassium Salts					
Nitrobenzene	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	Sodium Bisulfite	\checkmark	\checkmark	\checkmark	×	\checkmark
Nitrogen	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	Sodium Dichromate	\checkmark	\checkmark	\checkmark	×	\checkmark
Nitrogen Tetroxide	0	×	0	\checkmark	×	Sodium Hypochlorite	0	0	\checkmark	×	0
Nitro Paraffins	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	Sodium Metaphosphate	\checkmark	\checkmark	\checkmark	×	\checkmark
Oleic Acid	\checkmark	\checkmark	~	0	\checkmark	Sodium Nitrate (Nitrate Melt)	0	×	0	0	0
Oleum (Fuming H2S04) to 100° F	0	0	\checkmark	×	0	Sodium Perborate	0	\checkmark	\checkmark	×	0
Olive Oil	\checkmark	\checkmark	\checkmark	0	\checkmark	Sodium Perchlorate	0	\checkmark	\checkmark	×	0
Ortho Phosphoric Acid to 400° F	\checkmark	\checkmark	\checkmark	×	0	Sodium Sulfate	\checkmark	\checkmark	\checkmark	×	0
Oxalic Acid	\checkmark	\checkmark	\checkmark	×	0	Sodium Sulfide	\checkmark	\checkmark	\checkmark	Х	0
Oxygen to 500° F	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	Sodium Tetraborate (Borax)	\checkmark	\checkmark	\checkmark	Х	0
Oxygen above 500° F	0	0	0	\checkmark	×	Sodium Thiosulfate (Hypo)	\checkmark	\checkmark	\checkmark	×	\checkmark
Palmitic Acid	\checkmark	\checkmark	\checkmark	0	\checkmark	Sorbitol	\checkmark	\checkmark	\checkmark	0	\checkmark
Paraffin	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	Stannic Chloride	\checkmark	\checkmark	\checkmark	×	0
Pentaerythritol	\checkmark	\checkmark	\checkmark	0	\checkmark	Steam to 600° F	\checkmark	\checkmark	\checkmark	0	0
Perchloric Acid to 72%, 200° F	0	0	\checkmark	×	×	Steam 600 to 1500° F	0	×	0	\checkmark	0
Perchloroethylene	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	Stearic Acid	\checkmark	\checkmark	\checkmark	0	\checkmark
Petroleum	\checkmark	\checkmark	~	\checkmark	\checkmark	Styrene	\checkmark	\checkmark	\checkmark	~	\checkmark
Phenol	\checkmark	0	\checkmark	×	\checkmark	Sugar	\checkmark	\checkmark	\checkmark	×	\checkmark
Phosphoric Acid to 400° F	\checkmark	\checkmark	\checkmark	×	0	Sulfate Liquors	\checkmark	\checkmark	\checkmark	×	\checkmark
Phosphorus	\checkmark	0	\checkmark	0	0	Sulfite Liquors	\checkmark	\checkmark	\checkmark	×	\checkmark
Phosphorus Oxychloride	\checkmark	\checkmark	\checkmark	×	0	Sulfur	\checkmark	0	\checkmark	0	0
Phosphorus Trichloride	\checkmark	\checkmark	\checkmark	0	0	Sulfur Dioxide to 500° F	\checkmark	\checkmark	\checkmark	0	0
Phthalic Acid/Anhydride	\checkmark	\checkmark	\checkmark	×	0	Sulfuric Acid to 77%, 300° F	\checkmark	\checkmark	\checkmark	×	0
Picric Acid	\checkmark	\checkmark	\checkmark	×	~	Sulfuric Acid 77-98% to 200° F	\checkmark	0	\checkmark	×	0
Polyethylene	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	Tar	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Polystyrene	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	Terephthalic Acid	\checkmark	\checkmark	\checkmark	×	\checkmark
Polyurethane	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	Tetrachloroethylene	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Potassium Alum	\checkmark	\checkmark	~	×	0	Tin	\checkmark	0	\checkmark	0	×
Potassium Bicarbonate	~	\checkmark	~	×	\checkmark	Toluene	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Potassium Carbonate	\checkmark	\checkmark	\checkmark	×	\checkmark	Toluene Sulfonic Acid	\checkmark	\checkmark	\checkmark	×	0
Potassium Chlorate	0	\checkmark	\checkmark	×	0	Toluic Acid	\checkmark	\checkmark	\checkmark	×	0
Potassium Choride	\checkmark	\checkmark	\checkmark	×	\checkmark	Trichloroethylene	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Potassium Cyanide	\checkmark	\checkmark	\checkmark	×	×	Triethanol Amine	\checkmark	\checkmark	\checkmark	×	\checkmark
Potassium Hydroxide to 350° F	\checkmark	\checkmark	\checkmark	×	0	Trisodium Phosphate	\checkmark	\checkmark	\checkmark	×	\checkmark
Potassium Nitrate to 300° F	~	\checkmark	~	×	\checkmark	Turpentine	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Potassium Permanganate to 300° F	\checkmark	\checkmark	\checkmark	×	0	Urea	\checkmark	\checkmark	\checkmark	×	\checkmark
Potassium Phosphate	\checkmark	\checkmark	\checkmark	×	\checkmark	Vegetable Oil	\checkmark	\checkmark	\checkmark	0	\checkmark
Propane	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	Vinegar	\checkmark	\checkmark	\checkmark	×	0
Propionic Acid	\checkmark	\checkmark	\checkmark	×	0	Vinyl Acetate	\checkmark	\checkmark	\checkmark	0	\checkmark
Propylene	~	\checkmark	~	\checkmark	~	Vinyl Chloride	\checkmark	\checkmark	\checkmark	~	\checkmark
Pyridine	~	×	~	×	\checkmark	Viscose	\checkmark	\checkmark	~	×	\checkmark
Pyroligneous Liquor	~	\checkmark	~	×	0	Water to 300° F	\checkmark	\checkmark	\checkmark	×	\checkmark
Sal Ammonia	\checkmark	\checkmark	~	×	0	Water Glass (Na2Si03)	\checkmark	\checkmark	\checkmark	×	\checkmark
Sal Soa - Na2C03 . 10 H20	\checkmark	\checkmark	\checkmark	×	\checkmark	Wood Pulp	0	\checkmark	\checkmark	×	\checkmark

CR GROUPS	1	2	3	4	5	CR GROUPS	1	2	3	4	5
Xylene	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	Zinc Chloride	\checkmark	\checkmark	\checkmark	×	~
Zinc	\checkmark	0	\checkmark	0	0	Zinc Sulfate	\checkmark	\checkmark	\checkmark	×	~

PEEK (POLY ETHER ETHER KETONE) MATERIALS

ROC Carbon offers a portfolio of PEEK thermoplastic grades that provide good chemical resistance and excellent physical properties for applications including bearings, seals and other parts. Material grades are available as finished parts per your specifications or as raw material blanks for machining.

GENERAL PROPERTIES

- Good chemical resistance to alkalis, aromatic hydrocarbons, halogenated hydrocarbons, alcohols, greases, and oils
- Self-lubricating
- Thermal stability
- Contamination resistance
- Mechanical strength

GRADE Filler	R-700 None	R-710 15% PTFE	R-720 15% glass	R-721 30% glass	R-730 30% carbon	R-740 30% carbon/PTFE
Density, g/cc	1.32	1.40	1.39	1.49	1.40	1.44
Hardness, HRR	126	124*	124	124	124	124
Tensile strength, psi	14,500	11,000	17,800	24,500	32,700	19,000
Shear strength, psi	7,700	N/A	N/A	14,000	14,000	N/A
Flexural strength, psi	24,700	19,000	26,000	33,500	51,000	30,450
Temperature limit, °F	500	500	500	500	500	500
Coefficient of friction**	0.34	0.11	N/A	N/A	0.28	0.11

PEEK MATERIAL PROPERTIES

RAW MATERIAL AVAILABILITY

Solid cylinders up to 20-inch diameter

Values given are typical properties, not guaranteed minimum values.

* Estimated value (actual Shore 88)

**Friction coefficients are measured under specific test conditions. Actual values will vary with different operating parameters.

ROCBON PTFE COMPOSITES

ROCBON 1000 series	GRADES AND	APPLICATIONS
is a selection of high- performance, reinforced	1007	Virgin PTFE for packings, seals and bushings
fluorocarbon resin composites that are unique	1051	25% fiberglass-filled grade for common seals and bushings
that possess exceptional properties:	1911 and 1921	Carbon/graphite-filled grades for bearings, piston rings, rider rings and various seals. An excellent combination that provides good service life. 1911 has 25% fill, 1921 has 35% fill
 Chemical resistance Self-lubricating Thermal stability Moisture resorbant 	1521	50% stainless steel-filled grade for bearings and valve seat applications where high load and corrosion are primary concerns.
 Contamination resistance Mechanical strength 	1821	Moly/bronze-filled grade for bearing and seal applications where high load strength is needed. 55% bronze, 5% moly filled
Electrical insulation	1551	Ceramic-filled grade for applications where high wear resistance is required. (25% mica)
	1621	35% carbon fiber-filled grade where high strength and high wear performance is sought; a high-performance composite grade.
	SIZES	

SOLID CYLINDER	TUBE	LARGER SIZES
1.5 in. to 6 in. diameter 12 in. long	1.5 in. to 15.875 in. diameter 12 in. long	Available upon request

RAW MATERIALS TECHNICAL SUPPORT

Technical support is available to help select the proper grade for the application, and engineering design service can be provided for the finished product. For fastest response, call our toll-free number.

ŝ
ш
E
2
Щ.
Ë
8
L L
Ë
<u>_</u>
S
Š
<u> </u>
~
Σ
δ
COM
E COM
FE COM
PTFE COM
PTFE COM
N PTFE COM
ON PTFE COM
BON PTFE COM
CBON PTFE COM
OCBON PTFE COM

Physical Property	ASTM Test Method	Units	1007 Virgin PTFE	1051 Glass	1521 Stainless Steel	1551 Ceramic	1621 Carbon Fiber	1821 Moly/Bronze	1911 Carbon/Graphite	1921 Carbon/Graphite
Specific gravity	D792	g/cc	2.17	2.24	3.78	2.20	2.10	3.90	2.11	2.10
Tensile strength @ break (MD)	D638	psi MPa	4,900 <i>33.8</i>	2,100 14.5	2,500 17.2	2,300 15.9	3,000 <i>20.7</i>	2,300 15.9	1,800 12.4	1,600 11.0
(CD)	D638	psi MPa	5,600 <i>38.6</i>	2,900 <i>20.0</i>	2,900 <i>20.0</i>	2,700 18.6	3,400 <i>23.5</i>	2,700 18.6	2,200 15.2	2,000 13.8
Elongation @ break (MD) (CD)	D638	% %	340 390	250 270	65 70	65 70	60 60	90 86	60 65	50 55
Deformation under load (MD) (CD)	D621 D621	% %	12.0 15.0	9.5 13.6	2.8 3.0	2.8 3.0	10.0 10.0	3.6 4.0	6.0 10.2	5.5 5.5
Flexural strength, 3% strain	D790	psi MPa	1,500 <i>10.3</i>	1,950 <i>13.5</i>	3,500 24.1	3,200 <i>22.0</i>	2,400 16.6	3,300 22.8	2,350 16.2	2,400 <i>16.6</i>
Flexural modulus	D790	psi MPa	90,000 622	190,000 1,313	250,000 1,727	250,000 1,727	160,000 <i>1,106</i>	210,000 1,451	160,000 1,106	180,000 1,244
Compressive strength, 5% strain	D695	psi MPa	1,800 12.4	2,200 15.2	4,000 27.6	3,500 24.1	2,500 17.2	3,000 <i>20.7</i>	2,500 17.2	2,700 18.6
Hardness, Durometer	I	Type D	54	62	70	20	68	70	64	66
Thermal expansion, X10 ⁵ (MD) (CD)	D696	in/in/∘F mm/mm/°C	7.5 13.5 6.2 3.4	6.4 11.5 2.3 2.3	5.3 9.5 2.2	5.3 9.5 2.2	4.0 7.2 3.6 2.0	5.6 10.1 2.4	6.0 10.8 2.6	4.6 8.3 2.0 2.2
Limiting PV @100 fpm, 72° F (22° C)	I	psi*fpm MPa*mpm	10,500 22	10,500 22	20,000 42	18,000 <i>38</i>	20,000 42	12,500 26	20,000 42	20,000 42
Wear factor (F) X10 ¹⁰	I	<u>in³/min</u> Ib/ft/hr <i>cm³/min</i> kg/m/hr	6 13.6	6 13.6	2 4.5	2 4.5	6 13.6	5 11.3	6 13.6	10 22.6
Coefficient of friction static dynamic	I		0.04 0.05	0.07 0.12	0.08 0.10	0.08 0.10	0.07 0.08	0.09	0.08	0.13 0.16

Note: The physical properties of ROC CARBON grades may vary in relation to the molded part size, configuration and the application conditions. The above values are typical and should be considered only as a guide or reference. MD = Molded direction; CD = Cross direction

1605 Brittmoore Road Houston, TX 77043-3107 Toll Free: 800.324.7743 Phone: 713.468.7743 Fax: 713.465.2158 Email: sales@roccarbon.com Web: roccarbon.com